RADIAC Technology Offers More Realistic Training for Those Who Work with Radiation Hazards

The personnel who sustain radiological systems need state-of-the-art simulation training to learn how to handle worst-case scenarios without being exposed to actual radiological hazards. Yet existing trainings use outdated and unrealistic methods. To improve training for the radiological sustainment community, NCMS began a project in September 2020—Advanced Radiation Detection Indication and Computation (RADIAC) Technology—that gathers experts from four Naval shipyards (Puget Sound, Portsmouth, Pearl Harbor, and Norfolk), along with industry partner Radiation Safety & Control Services (RSCS). The project team has been developing true-to-life models of radiation detection, indication and computation (RADIAC) instruments and dosimetry simulation tools.

RADIAC instruments and dosimetry tools are employed in industries that generate and/or handle radioactive material to ensure that regulatory requirements are met, to keep radiation exposure “as low as reasonably achievable” (ALARA), and to respond to emergencies. Dosimetry, the science of determining and measuring the amount or dosage of radiation absorbed by a substance or living organism, is performed with a dosimeter instrument that assesses exposure to radiation doses (such as X-rays or gamma rays). This project will create updated RADIAC and dosimetry simulation equipment for training that can be utilized by commercial, state, and federal entities working with radiological hazards.

This updated equipment is needed because current simulation training relies on unrealistic, outdated technology and methods that require instructors to input data on a handheld terminal that display readings on RADIAC equipment or verbally provide data from physically printed information aides. To design a more appropriate, effective training, the project team will produce equipment that resembles RADIAC instruments and dosimetry used by the nuclear and radiation protection industries.

The team will develop the training materials at Puget Sound Naval Shipyard and Intermediate Maintenance Facility (PSNS & IMF), which has nuclear training facilities and Navy nuclear power vessels. The project will proceed in two phases. First, the team will assemble RADIAC and dosimetry simulation equipment that resembles the real instruments currently in use. Building on the existing work of industry partner, RSCS—specifically RSCS’s commercially available training system called SIM-Teq®—the team will create executable native SIM-Teq simulation control software optimized for a PC/tablet touch screen.   Additionally, the team will manufacture a simulated Thermo Fisher Electronic Personal Dosimeter (EPD) that is designed to operate like the currently fielded model EPD MkII dosimeter.

Phase II will add two training probes that simulate the fielded multi-function RADIAC (MFR): the DT-680 Beta/Gamma probe and the DT-304/PDR shielded beta frisker probe. The simulated beta/gamma training probe will auto-respond to simulated gamma sources. The simulated beta frisker probe will auto-respond to pre-programmed radio-frequency identification device (RFID) sources, which can emulate surface contamination. Another device will enable the new training dosimeter to auto-respond to the simulated gamma sources.

The team will conduct initial testing of one prototype at PSNS & IMF, in real-life environments with physical constraints such as tight spaces, high vertical surfaces, and physical barriers. After this testing, the team will gather feedback, lessons learned, and successes. Then, they will distribute the remaining simulation tool sets to the Naval shipyards at Norfolk, Portsmouth, and Pearl Harbor. Each organization will evaluate the equipment based on their local needs and requirements.

This project will benefit the DOD because industrial radiography (X-ray) is one of the most important, versatile, and widely accepted of all the non-destructive examination methods in the DOD maintenance and sustainment community. Non-destructive inspections evaluate when a component, equipment, or system needs to be repaired or replaced, including critical structural components and pipe welds for submarines, naval vessels, and aircraft. These inspections are a vital part of asset management and sustainment. As the DOD moves towards predictive maintenance, industrial radiography and other non-destructive inspections will become more prevalent. However, all radiographic equipment can potentially expose the radiographer or those in the area to radiation. This project’s training simulation equipment will safely help to improve radiographers’ proficiency with RADIAC instruments.

This project’s benefits will extend beyond the DOD to improve trainings provided by commercial, state, and federal entities that work with radiological hazards. While the training equipment will be widely used, it will be especially beneficial in hospitals and commercial nuclear power plants. The simulated equipment will ensure that personnel are better trained, reducing the risk of accidents, lessening the time spent on maintenance, and lowering overall costs.