AI Methods for Corrosion

C. Thomas Savell, GCAS Inc ctsavell@gcas.net; 760-591-4227 URL: www.gcas.net October 10, 2017

GCAS Incorporated

- Founded in 1981, Incorporated in 2000
- Small Business located in San Marcos California
 - \$1.2M Annual Revenue;
 - 10-people
 - Women-Owned SB Designation => Currently "in-Suspense"
- DUNS: 118594928
- CAGE: 6W067
- Facility Security Clearance
- NAICS Codes:
 - Primary: 541511 CUSTOM COMPUTER PROGRAMMING SERVICES
 - 511210 SOFTWARE PUBLISHERS
 - 541330 ENGINEERING SERVICES

2

- 541512 COMPUTER SYSTEMS DESIGN SERVICES
- 541513 COMPUTER FACILITIES MANAGEMENT SERVICES
- 541690 OTHER SCIENTIFIC AND TECHNICAL CONSULTING SERVICES
- 541711 RESEARCH AND DEVELOPMENT IN BIOTECHNOLOGY
- 541712 RESEARCH AND DEVELOPMENT IN THE PHYSICAL, ENGINEERING,
- Prior Seaport Prime

Predictive Data Analytics

Our Expertise:

- Corrosion
- Acoustics, Shock and Vibration
- Planning and Scheduling
- Expert Knowledge-Base Systems
- Field Data Collection Systems
- Diagnostic Systems (e.g., Medical Systems)
- Advanced Probabilistic Methods
- Customers:
 - Army, Navy, AF, Darpa, MDA, DOT, NASA, NIH/NCI, PPG, LMCO, Scripps
- Previous Commercialization Ventures
 - GCAS Enterprise Accounting Suite (Job Costing, Project Management, e-Suite)
 - VC100 PC-based Vibration Control System
 - ClipBoard Computer

Sample Contracts

- Autonomous Tank and Void Inspection Flying Robots
- Tank and Void Inspection Software
- Expert Structure and Coating Analysis Tool (ECAT/ ESCAT)
- COORDBMS Corrosion Inspection Database System
- Aircraft Inspection and Repair System (AIRS)
- Data Mining and Analytics of NAVAIR Inspection Databases
- Corrosion Expert System (CES)
- Modeling of Coating System Deterioration from Field Data
- Accelerated Corrosion Expert Simulator for Automotive and Aircraft (ACES)

Montage of T&V Corrosion

(A1) Repair in Next MC Condition (Urgency) Mandato e-inspect Next MC. (Repair No P1 maintenance action required

Component Criticality/Risk (Importance)

Montage of Aircraft Corrosion

G GCAS.

BACKUP SLIDES

ESCAT Process Flow

Corrosion Analysis is a Black Art

- Electro-Chemical ("Physics-based") procedural models have limited success.
- Turn to mystics, soothsayers, consultants for Heuristic Solutions
- And those who practice AI

What are AI Algorithms?

- **Originally:** Methods that model the human thought process
- Current expanded definition added Statistical and Optimization techniques used in Data Analysis, Data Mining and Decision Making
- "An algorithm that is not part of the current day convention or standard."

Al Analysis Approach

Al Methods

- ANOVA
- Weibull Analysis
- Monte Carlo
- Bayesian Networks
- Naïve Bayes
- Markov Model/Chains
- Neural Nets
- Genetic Algorithms

- Procedural (Physics-based: mechanical, electrochemical, etc.)
- Decision Trees
- Rule-based Production Systems
- Linear/Logarithmic Regression
- Time Series

Rule-Based Expert System

The Inference Engine

- Efficient Pattern Matching of Fact to Rules
- Conflict Resolution
- Execution of Rules
- Uncertainty Processing

Rules = Complex (Deep) Knowledge

IF A is less than a AND B lasts b THEN H, h, may occur with likelihood between LL and LH

Example rules from CES

- IF there is water AND there is an electrolyte THEN corrosive environment is present
- IF there is an electrolyte AND there is water THEN corrosive environment with likelihood=10
 Redundancy
- IF there is a low resistivity electrolyte THEN there is a corrosive environment
- IF there is an insulator between metals THEN galvanic corrosion is possible
- IF there is an insulator between metals AND insulator doesn't last the life of the vehicle THEN galvanic corrosion is possible
 Subsumption

Where does the KB come from?

- Procedural methods (Equations),
- Lessons-Learned,
- Test data,
- Observation, and
- Subject Matter Experts (SMEs)

Reasoning under Uncertainty

- Uncertainty in the Rules
- Uncertainty in the Evidences

Quantifying Uncertainty

- Belief [0.0..1.0] Bayesian Network
 Probability [0.0..1.0] Markov Chains
 Confidence [???..???] Dempster-Shaffer
- Likelihood $[-\infty .. +\infty]$
- Certainty Factors [-5 .. +5] Carnov
- Fuzzy Values [low medium high]

Bayesian Network + CPT

Variable 3

		Valiable 5					
Variable1	Variable2	State_1	State_2	State_3	State_4		
State_1	State_1	10.000	0.000	60.000	30.000		
State_1	State_2	20.000	1.000	50.000	29.000		
State_1	State_3	30.000	2.000	40.000	28.000		
State_2	State_1	40.000	3.000	30.000	27.000		
State_2	State_2	50.000	4.000	20.000	26.000		
State_2	State_3	60.000	5.000	10.000	25.000		

Coating Selection Risk BN

Example of BN (CES)

Turnbull/Weibull Analysis

Markov Transition Matrix

	Probability of Changing States MATRIX										
Ru	in 1	fime: :	1:36:38	01 DEC	2005				P	age: 2	
		New	Stage1	Stage2	Stage3	Stage4	Repair	Replace	R&M	TOTAL	
New		1	.00	.00	.00	.00	.00	.00	.00	0	
S-1		.00	.60	.25	.01	.00	.12	.00	.00	94	
S-2		.00	.01	.85	.12	.00	.00	.00	.00	62	
8-3		.00	.00	.00	.91	.00	.08	.00	.00	12	
S-4		.00	.00	.00	.00	1	.00	.00	.00	0	
Rpr		.00	.00	.00	.00	.00	1	.00	.00	0	
Rp1		.00	.00	.00	.00	.00	.00	1	.00	0	
R&M		.00	.00	.00	.00	.00	.00	.00	1	0	