NCMS partnered with Ilumisys on a U.S. Department of Energy-sponsored project to quantify the environmental impacts of LED lamps, incandescent lamps and fluorescent benchmark lamps over a product lifecycle, based on operational and durability testing of a variety of lighting products. An interactive Sustainable LED Lighting Product Design Guide tool was developed that allows a more realistic comparison of lamp designs. The Guide can aid architectural and lighting product designers and engineers in making design decisions that consider key environmental impacts (greenhouse gas emissions, energy use and mercury emission) across all phases of the life of an LED lighting product.
The Guide is available here as an online tool for efficient evaluations of LED lighting design features in ‘what-if’ scenarios.
Rationale: Solid-state lighting, using light-emitting diodes (LEDs), has high energy saving potential over conventional incandescent and fluorescent lamps currently in use. However, although there are great energy savings in the use-phase of the lamps, the remainder of the product lifecycle is not so cut-and-dried. LED products rely on on-board or sometimes off-board power supplies and other electronic circuits. Aluminum heat sinks may be required for heat management to maintain long lifetimes. Adhesives or fasteners are necessary to hold all the constituent components together. All of this added complexity has an environmental footprint, especially when considered against the relative simplicity of fluorescent tubes and screw-in incandescent bulbs. Only by evaluating the entire product lifecycle, from raw material extraction to manufacturing to use through end-of-life, can the overall ecological impacts of the lamps be determined.
The Project: National Center for Manufacturing Sciences (NCMS) and Ilumisys partnered on a three-year project awarded by the United States (U.S.) Department of Energy (DOE), to quantify the impacts of LED lamps, incandescent lamps and fluorescent benchmark lamps over a product lifecycle based on operational and durability testing of a variety of lighting products including power consumption, light output, and useful life of a lamp in order to allow a more realistic comparison of lamp designs.. An interactive Sustainable LED Product Design Guide software tool was developed and released in September 2011.
Deliverables: The Guide is available at www.ncms.org as an online tool. It has three novel features for efficiently evaluating LED lighting design features in ‘what-if’ scenarios:
- Bill-of-Materials (BOM) Builder – Designers may import process data for each component and supply functional data for the product, including power, consumption, lumen output and expected useful life.
- Environmental Impact Review – Designs are comparable across lifecycle phases, subsystems, and environmental impact category, and can be normalized to a user-defined functional unit.
- Drill-down Review – These provide an in-depth look at individual lamp designs with the ability to review across subsystem or lifecycle phase.
Benefits: The Guide can aid architectural and lighting product designers and engineers in making design decisions that consider three important environmental impacts (greenhouse gas emissions, energy use and mercury emission) across all phases of the life of an LED lighting product.
Disclaimer: This guide was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Send your comments and feedback to:
